Indroduction
Regression Analysis with R
Welcome to the Regression Analysis with R repository, a comprehensive guide and codebase for conducting regression analysis using the R programming language. This repository aims to help users gain a better understanding of regression techniques and how to apply them effectively using R.
Table of Contents
Introduction
Prerequisites
Getting Started
Included Techniques
Examples & Datasets
Contribution Guidelines
License
Introduction
Regression analysis is a powerful statistical method for modeling the relationship between a dependent variable and one or more independent variables. This repository provides a collection of R scripts, examples, and datasets to help you learn and apply various regression techniques in your projects.
Prerequisites
To get started with this repository, you’ll need: - A basic understanding of regression analysis concepts
- R and RStudio installed on your local machine (Download R, Download RStudio)
Getting Started
Clone the repository using
git clone https://github.com/Briankim254/Regression-analysis-with-R.gitNavigate to the project directory using
cd Regression-analysis-with-ROpen the R scripts and datasets in RStudio
Explore the examples and techniques provided, and apply them to your projects
Included Techniques
This repository covers various regression techniques, including:
Simple Linear Regression
Multiple Linear Regression
Polynomial Regression
Ridge Regression
Lasso Regression
Elastic Net Regression
Examples & Datasets
The repository includes practical examples and datasets to help you understand and apply regression techniques in real-world scenarios. These examples demonstrate the process of fitting regression models, evaluating their performance, and interpreting the results.
Contribution Guidelines
We welcome contributions to the repository, including new techniques, examples, or improvements to the existing content. To contribute, please follow these steps:
Fork the repository and create a new branch for your changes
Make your changes or additions to the project
Create a pull request and wait for a review from a team member
Please ensure that your code and documentation follow best practices for quality and clarity.
License
The Regression Analysis with R repository is licensed under the MIT License. This allows for open collaboration and sharing of the content while ensuring that contributors retain ownership of their work.